

Fig. 1. View of (1) showing the atom-numbering scheme.
M^{II} complexes $\left(M^{\mathrm{II}}=\mathrm{Ni}, \mathrm{Cu}, \mathrm{Zn}\right)$ have been prepared (Fikar, Bharadwaj, Potenza \& Schugar, unpublished results).
As indicated by the torsion angles and bond distances, the molecule shows approximate point symmetry 2 with the pseudo-diad axis normal to the $S(2)-S(1)$ and $C(5)-C(6)$ bond vectors. The $C(1)-$ $\mathbf{S}(1)-\mathrm{S}(2)-\mathrm{C}(10)$ torsion angle in the ten-membered macrocycle ring is substantially larger than that found [52 (1) ${ }^{\circ}$ (Cheng \& Nyburg, 1978)] in the six-membered ring of an oxadithiin derivative and lies within the range observed [78.6 to 101° (Rout, Seshasayee, Subrahmanyan \& Aravamudan, 1983)] for several acyclic and presumably unstrained disulfides. Both imino groups are trans substituted $[\mathrm{C}(8)-\mathrm{N}(2)-$ $\mathrm{C}(9)-\mathrm{C}(10),-172 \cdot 6(2)^{\circ} ; \mathrm{C}(3)-\mathrm{N}(1)-\mathrm{C}(2)-\mathrm{C}(1)$,
$\left.-173.7(2)^{\circ}\right]$ as is the cyclohexane ring which has the stable chair conformation. The $\mathrm{N}(1)-\mathrm{C}(3)-\mathrm{C}(8)-\mathrm{N}(2)$ torsion angle [$-63.1(2)^{\circ}$] is substantially larger than those reported for protonated [$-58.5,58.3^{\circ}$ (Morse \& Chesick, 1976)] or chelated [53.8,52.8 ${ }^{\circ}$ (Sato \& Saito, 1977)] 1,2-trans-diaminocyclohexane, possibly as a result of constraints imposed by the ten-membered ring. Other structural parameters of the cyclohexane ring, including the $\mathrm{C}-\mathrm{C}-\mathrm{C}-\mathrm{C}$ torsion angles, are typical.

We thank the National Science Foundation for support of research (Grant 84-17548) and the National Institutes of Health for an instrumentation grant (Grant 1510 RRO 148601 Al).

References

Bharadwaj, P. K., Potenza, J. A. \& Schugar, H. J. (1986). J. Am. Chem. Soc. 108, 1351-1352.
Cheng, P.-T. \& Nyburg, S. C. (1978). Acta Cryst. B34, 2907-2910.
D'Амісо, J. J. \& Dahl, W. E. (1975). J. Org. Chem. 40, 1224-1227.
Enraf-Nonius (1983). Structure Determination Package. EnrafNonius, Delft, The Netherlands.
International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1982). MULTAN82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Morse, M. D. \& Chesick, J. P. (1976). Acta Cryst. B32, 954-956.
Rout, G. C., Seshasayee, M., Subrahmanyan, T. \& Aravamudan, G. (1983). Acta Cryst. C39, 1387-1389.
Sato, S. \& Saito, Y. (1977). Acta Cryst. B33, 860-865.

Acta Cryst. (1988). C44, 765-767

1-p-Menthene-3,6-diol, a Monoterpene

By Terry J. Delord, Arcelio J. Malcolm, Frank R. Fronczek, Nikolaus H. Fischer and Steven F. Watkins

Department of Chemistry, Louisiana State University, Baton Rouge, Louisiana 70803-1804, USA
(Received 29 October 1987; accepted 17 December 1987)

Abstract

C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}, M_{r}=170 \cdot 25\), monoclinic, $C 2$, $a=17.837$ (4), $\quad b=7.113$ (7), $\quad c=8.096$ (2) $\AA, \quad \beta=$ 102.17(6) $, \quad V=1004(2) \AA^{3}, \quad Z=4, \quad D_{x}=$ $1.13 \mathrm{~g} \mathrm{~cm}^{-3}, \quad \lambda($ Мo $K \alpha)=0.71073 \AA, \quad \mu=0.7 \mathrm{~cm}^{-1}$, $F(000)=376, T=297 \mathrm{~K}, R=0.036$ for 973 reflections with $I>2 \cdot 5 \sigma(I)$ (1218 unique). The cyclohexene ring itself is in the half-chair conformation, very close to twofold symmetry $\left[\Delta C_{2}=1.3(2)^{\circ}\right.$] with virtually no torsion $\left[0.5(3)^{\circ}\right]$ about the double bond. The two

0108-2701/88/040765-03\$03.00
hydroxyl groups are oriented syn with respect to one another, anti with respect to the isopropyl group; each hydroxyl is in contact with opposite-number hydroxyls on two neighboring molecules $[\mathrm{O} \ldots \mathrm{O}=2.691$ (2), 2.728 (2) \AA], resulting in disordered hydrogen bonding.

Experimental. The title compound (I) was isolated from Melampodium divaricatum (Rich. in Pers.) DC. (Asteraceae) from Provincia de Alajuela, Costa Rica;

Table 1. Experimental details

Crystal	Colorless, $0.6 \times 0.4 \times 0.2 \mathrm{~mm}$
Instrument	Enraf-Nonius CAD-4 diffractometer
Monochromator	Incident beam, graphite
Unit cell	25 reflections, $22<2 \theta<24^{\circ}$
Mode	$\omega-2 \theta$
Standards	10,0,0, 020, 002; $\pm 3.6 \%$ variation
$R_{\text {tnt }}$	0.026
Corrections	Background, Lorentz, polarization
2θ range	2-54 ${ }^{\circ}$
$h k l$ ranges	$\begin{aligned} & h=0 \text { to } 22 \\ & k=0 \text { to } 9 \\ & l=-10 \text { to } 10 \end{aligned}$
Reflections	1291 total 1218 unique 245 unobserved 973 with $I>2 \cdot 5 \sigma(I)$
Solution	Direct methods
Function minimized	$\sum w\left(\left\|F_{o}\right\|-\left\|F_{c}\right\|\right)^{2}$
Weights	$4 F_{0}^{2} \mathrm{Lp}^{2} /\left[S^{2}\left(C+R^{2} B\right)+\left(0.04 F_{0}^{2}\right)^{2}\right]$ $S=$ scan rate, $C=$ integrated count, $R=$ scan time/background time, $B=$ background count
Parameters refined	125
$R, w R, R$ (all)	0.036, 0.048, 0.057
Goodness of fit	1.91
Maximum shift/e.s.d.	0.01
$\Delta \rho$	$0.14,-0.18 \mathrm{e} \AA^{-3}$

collected on 3 July 1981 (C. Hasbun No. 313, voucher at Universidad Nacional Heredia, Costa Rica). A clear, colorless sample was cleaved from a larger prismatic crystal and mounted with epoxy on a glass fiber in random orientation. Details of data collection and structural refinement are given in Table 1.

(I)

Structure solved using MULTAN80 (Main, Fiske, Hull, Lessinger, Germain, Declercq \& Woolfson, 1980); all 12 non-H atoms were located from an E map. Refinement by full-matrix least squares with Enraf-Nonius SDP (Frenz, 1978): non-H atoms anisotropic; all non-hydroxyl H atoms placed in computed positions with independent isotropic thermal parameters but riding C atoms to which they are attached; disordered half-H atoms located on both hydroxyl groups by ΔF syntheses, then adjusted for reasonable geometry to ride O atoms with fixed thermal parameters. The final cycle of refinement included 125 variable parameters and converged to $R=0.036$. Atomic scattering factors from International Tables for X-ray Crystallography (1974). The absolute configuration was not determined.

Table 2. Positional and equivalent isotropic thermal parameters and their e.s.d.'s

		\boldsymbol{y}	\boldsymbol{z}	$B_{\text {eq }}{ }^{*}\left(\AA^{2}\right)$
	$0.8942(1)$	0.232	$0.6299(2)$	$3.44(4)$
C1	$0.8875(1)$	$0.4152(4)$	$0.6476(3)$	$3.40(4)$
C2	$0.8717(1)$	$0.5547(3)$	$0.5058(2)$	$3.10(4)$
C3	$0.8421(1)$	$0.4614(3)$	$0.3343(2)$	$2.94(4)$
C4	$0.8915(1)$	$0.2887(3)$	$0.3227(2)$	$3.24(4)$
C5	$0.8865(1)$	$0.1440(3)$	$0.4568(2)$	$3.22(4)$
C6	$0.9101(2)$	$0.0978(4)$	$0.7774(3)$	$5.04(6)$
C7	$0.8354(1)$	$0.5993(3)$	$0.1847(2)$	$3.73(4)$
C8	$0.7867(1)$	$0.5161(4)$	$0.0231(3)$	$4.87(6)$
C9	$0.9121(2)$	$0.6640(5)$	$0.1523(3)$	$6.11(6)$
C10	$0.81554(8)$	$0.0403(2)$	$0.417(2)$	$4.10(3)$
O1	$0.81920(9)$	$0.6924(2)$	$0.5437(2)$	$4.17(3)$
O2				

*The equivalent isotropic thermal parameter, for atoms refined anisotropically, is defined by the equation:

$$
\begin{gathered}
1.333\left(a^{2} B_{11}+b^{2} B_{22}+c^{2} B_{33}+b c B_{23} \cos \alpha+a c B_{13} \cos \beta+\right. \\
\left.a b B_{12} \cos \gamma\right) .
\end{gathered}
$$

Table 3. Bond lengths (\AA), bond angles $\left({ }^{\circ}\right)$ and torsion angles $\left(^{\circ}\right.$)

C1	C2	1.320 (3)			C4	C5	1.526 (2)		
C1	C6	1.514 (2)			C4	C8	1.544 (2)		
C1	C7	1.508 (3)			C5	C6	1.512 (2)		
C2	C3	1.498 (3)			C6	01	1.444 (2)		
C3	C4	1.529 (2)			C8	C9	1.529 (3)		
C3	02	1.432 (2)			C8	C10	1.517 (3)		
C2	C1	C6	121.	(2)	C5	C4	C8	114	(1)
C2	C1	C7	123.	(2)	C4	C5	C6	112	(1)
C6	C1	C7	115	(2)	C1	C6	C5	112	(1)
C1	C2	C3	125.	(2)	C1	C6	Ol	110	(1)
C2	C3	C4	112	(1)	C5	C6	Ol	110	(1)
C2	C3	O2	108.	(1)	C4	C8	C9	111	(2)
C4	C3	O2	112	(1)	C4	C8	C10	113	(2)
C3	C4	C5	108.	(1)	C9	C8	C10	109	(2)
C3	C4	C8	113	(1)					
C6	C1	C2	C3	0.5 (3)	02	C3	C4	C5	-167.2 (2)
C7	C1	C2	C3	180.0 (6)	02	C3	C4	C8	65.1 (2)
C2	C1	C6	C5	14.6 (3)	C3	C4	C5	C6	61.8 (2)
C2	C1	C6	O1	-108.8 (2)	C8	C4	C5	C6	-171.2 (2)
C7	C1	C6	C5	-165.0 (2)	C3	C4	C8	C9	-165.0 (2)
C7	C1	C6	01	71.7 (2)	C3	C4	C8	C10	70.2 (2)
C1	C2	C3	C4	15.8 (3)	C5	C4	C8	C9	$70 \cdot 6$ (2)
Cl	C2	C3	02	140.2 (2)	C5	C4	C8	C10	-54.2 (2)
C2	C3	C4	C5	-44.8 (2)	C4	C5	C6	C1	-46.2 (2)
C2	C3	C4	C8	-172.6 (2)	C4	C5	C6	O1	77.1 (2)

Final positional and equivalent isotropic thermal parameters for all non-H atoms are given in Table 2, and bond lengths, bond angles and torsion angles are shown in Table 3.* Fig. 1 shows the molecule and the atomic numbering scheme.

Related literature. Isolation from Eupatorium macrocephalum and structure by NMR: Gonzales, Bermejo Barrera, Bermejo Barrera \& Massanet (1972); crystal

[^0]

Fig. 1. Molecule of $\mathrm{C}_{10} \mathrm{H}_{18} \mathrm{O}_{2}, 50 \%$ ellipsoids (Johnson, 1965).
structure of trans-1(7)-p-menthene-2,8-diol: Scott \& Richards (1971); structure of menthyl trimethylammonium iodide: Gabe \& Grant (1962); systematics and classification of the genus Melampodium: Stuessy (1972).

References

Frenz, B. A. (1978). The Enraf-Nonius CAD-4 Structure Determination Package - A Real-Time System for Concurrent X-ray Data Collection and Crystal Structure Solution. Computing in Crystallography, edited by H. Schenk, R. Olthofhazekamp, H. van Koningsveld \& G. C. Bassi, pp. 64-71. Delft Univ. Press.
Gabe, E. J. \& Grant, D. F. (1962). Acta Cryst. 15, 1074-1077.
Gonzales, A. G., Bermejo Barrera, J., Bermejo Barrera, T. L. \& MASSANET, G. M. (1972). An. Quím. 68, 319-323.

International Tables for X-ray Crystallography (1974). Vol. IV. Birmingham: Kynoch Press. (Present distributor D. Reidel, Dordrecht.)
Johnson, C. K. (1965). ORTEP. Report ORNL-3794. Oak Ridge National Laboratory, Tennessee, USA.
Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declerce, J.-P. \& Woolfson, M. M. (1980). multan80. a System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
Scott, W. E. \& Richards, G. F. (1971). J. Org. Chem. 36, 63-65.
Stuessy, T. F. (1972). Rhodora, 74, 1-219.

Acta Cryst. (1988). C44, 767-769

Structure of 3'-Azido-3'-deoxythymidine, AZT

By I. Dyer, J. N. Low and P. Tollin
Carnegie Laboratory of Physics, University of Dundee, Dundee DD1 4HN, Scotland

H. R. Wilson
Department of Physics, University of Stirling, Stirling FK9 4LA, Scotland

and R. Alan Howie
Department of Chemistry, University of Aberdeen, Meston Walk, Old Aberdeen AB9 2UE, Scotland
(Received 4 November 1987; accepted 6 January 1988)

Abstract. $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}_{5} \mathrm{O}_{4}, M_{r}=267 \cdot 2$, monoclinic, $P 2_{1}$, $a=5.716$ (3), $\quad b=11.998$ (8), $\quad c=17.658$ (10) $\AA, \quad \beta$ $=94.26(4)^{\circ}, V=1208 \AA^{3}, Z=4, D_{x}=1.47 \mathrm{~g} \mathrm{~cm}^{-3}$, $\lambda($ Mo $K \alpha)=0.71069 \AA, \mu=7.5 \mathrm{~cm}^{-1}, \quad F(000)=560$, $T=293 \mathrm{~K} . \quad R=0.060$ for 2138 unique observed [$F>4 \sigma(F)$] reflections. The N-glycosidic torsion angles χ have values $-125.9(5)$ and $-172.0(5)^{\circ}$, in the anti range. (Molecule- A values are given first throughout.) The sugar puckers are ${ }_{3}^{2} T$ (C^{\prime}-exo/ C^{\prime} 'endo), with $P=171(1)^{\circ}$ and $\psi_{m}=14(1)^{\circ}$, and ${ }_{3}^{4} T\left(C 4^{\prime}\right.$-endo/ C3'-exo), with $P=213(1)^{\circ}$ and $\psi_{m}=11(1)^{\circ}$. The C4-C5 conformations, with $\gamma=49.7$ (5) and 173.7 (5) ${ }^{\circ}$, are +sc (gauche-gauche) and ap (gauchetrans). The conformational parameters used follow the guidelines of the IUPAC-IUB Joint Commission on Biochemical Nomenclature [Pure Appl. Chem. (1983), 55, 1273-1280]. The molecules in the asymmetric unit form a hydrogen-bonded, base-paired dimer. The

0108-2701/88/040767-03\$03.00
bonding is as follows: $\mathrm{N} 3 A-0.973 \AA-\mathrm{H} 3 A \ldots$ $1.790 \AA \cdots \mathrm{O} 2 B, \mathrm{~N} 3 A \cdots \mathrm{O} 2 B 2.747$ (8) \AA, angle at $\mathrm{H} 3 A 167^{\circ}$ and $\mathrm{N} 3 B-0.992 \AA-\mathrm{H} 3 B \cdots 1.916 \AA \cdots \mathrm{O} 2 A$, $\mathrm{N} 3 B \ldots \mathrm{O} 2 A 2 \cdot 894$ (8) \AA, angle at $\mathrm{H} 3 B 168^{\circ}$. The propeller twist between the bases is 5° [Wilson \& Tollin (1987). Nucleosides Nucleotides, 6, 643-653].

Experimental. Crystals were obtained from aqueous solution. Space group and initial cell dimensions were obtained from Weissenberg photographs. Data were collected on a Nicolet P3 (four-circle) diffractometer in Aberdeen by RAH. The crystal had dimensions $0.6 \times 0.3 \times 0.2 \mathrm{~mm}$. Cell parameters were measured on the diffractometer using 14 reflections in the 2θ range $15-22^{\circ}$. Range of indices: $0 \leq h \leq 9 ; 0 \leq$ $k \leq 18 ;-26 \leq l \leq 26$. Data measured using $\theta / 2 \theta$ scans in the range $0<2 \theta<55^{\circ}$. Standard reflections, 253 and $10 \overline{6}$, were measured every 50 reflections. No
(c) 1988 International Union of Crystallography

[^0]: * Lists of structure factors, anisotropic thermal parameters and H -atom positions have been deposited with the British Library Document Supply Centre as Supplementary Publication No. SUP 44606 (15 pp .). Copies may be obtained through The Executive Secretary, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

